
The proposed method can be used for nondestructive determination of the internal dynamic 
stressed state of machine components, constructions, and their elements. 

In conclusion, let us note that model (3) represents a rough reflection of field nonuni- 
formity, and fails to fully describe the real dynamic stresses within the waveguide. How- 
ever, it does provide a solution for the poorly founded problem, one that is suitable for 
practical application. Moreover, this method of evaluating the nonuniformities of the 
field allows for measurement tools currently in production and, consequently, immediately 
available in actual practice. 
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LONG WAVES OF FINITE AMPLITUDE IN POLYDISPERSED 

GAS SUSPENSIONS 

N. A. Gumerov UDC 532.529 

Most theoretical studies dealing with the wave dynamics of gas suspensions are devoted 
to the propagation of weak waves and waves of finite amplitude in monodisperse mixtures 
[1-7]. In [i, 8] we find a model for a polydisperse suspension consisting of a gas and 
a finite number of particle fractions. The generalization of this model to the continuous 
functions of particle distribution by size insofar as this relates to description of the 
propagation of sound waves and vapor and gas suspensions, as well as certain of the results 
from the calculation of dispersion and attenuation of monochromatic perturbations, is pre- 
sented in [9]. 

It has been demonstrated in the present study that the propagation of long-wave per- 
turbations of finite amplitude in rarefied polydisperse gas suspensions with an arbitrary 
mass content of particles within the mixture and an arbitrary function of particle distri- 
bution by size can be described within the framework of the model of a monodisperse medium 
with a particular effective particle radius. In particular, this allows us to generalize 
the results of the earlier analytical and numerical studies into the propagation of long 
waves in monodisperse suspensions without phase transitions to polydisperse gase suspensions. 

i. Original Equations. Let us examine a rarefied gas suspension with a limited volu- 
metric particle content of ~2 ~ i within the mixture. The relative mass particle content 
m = ~2p2~ ~ in this case need not be small, since the true density of the material for 
the particle is considerably greater than the true gas density p2 ~ m p 0. We will assume 
the particles to be incompressible, and that the gas is ideal, calorically perfect (the 
viscosity and thermal conductivity of the gas is taken into consideration only in inter- 
phase interaction). 

Tyumen'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 4, pp. 157-161, July-August, 1990. Original article submitted March 6, 1989. 
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The propagation of plane one-dimensional waves with the characteristic period t,;~ m ~, 
where �9 is the characteristic time required to even out the velocities and temperatures 
of the gas and particles, in zeroth approximation of the small parameter 6 = z/t, < 1 
is described by the following effective-gas model [i]: 

d p + pux = O, pdtv + p~ = O, P/Po = (P/Po) Y% 

9 : Pl + P2, pv : piui + p2v2, p : @lR1Ti 

(v = v l  = v~, T = T~ = T~, d t  = O/Ot + vO/Ox); 

, = % - R ~ + m o %  cp ( ~ p o )  ~/2 C1 + m~ C V , Ye ~ -- Ce = 
cp = t + %  l + m  o ~v' \ - ~ o /  

Here  p, v ,  p ,  and  T a r e  t h e  mean d e n s i t y ,  v e l o c i t y ,  p r e s s u r e ,  a nd  t e m p e r a t u r e ;  c a nd  R~ i s  
the capacity (for the g a s ,  at constant pressure) and the gas constant; cp and c V are the 
heat capacities of the equilibrium mixture at constant pressure and volume; 7e and C e are 
the equilibrium adiabatic exponent and speed of sound in the mixture. The subscript 0 
identifies the initial unperturbed state, which is assumed to be uniform through the space. 
The subscripts 1 and 2 denote the corresponding parameters of the gas and the particles, 
while quantities which do not have these subscripts characterize the mixture as a whole. 
The subscripts t and x denote partial derivatives with respect to the time t and the spa- 
tial coordinate x; d t is the total (baricentric) derivative. 

In the following (first) approximation of the small parameter 6 we must take into 
consideration the velocity and thermal nonequiiibrium of the phases. In this case, the 
difference between the velocities and temperatures of the gas and the particles will be 
small (proportional to 6), in connection with which, for force and thermal interphase inter- 
actions linear quasisteady laws will be valid~ 

Let the particles in the mixture be thoroughly mixed and distributed by size over 
the segment A = [a_, a+] with density N(a, x, t) [in the initial state N0(~)]. The velocity 
and temperatures of the particles will be functions of their dimensions [9]. If we assume 
that the particles are spherical and do not interact directly with each other, we can write 
a closed system of equations for the conservation of mass, momentum, and energy, as well 
as the equations of state, in the following form [i, 9]: 

dip 1 "~- plvlx -- O, d2N + ~ = O, 

mdl l = - -  - -  P ,  = - -  7 : 1 ,  mc# rl = 

F = j" Q = ,I 
A A 

~ 4 3 0  A =  m2~((vl--v2)2~-~da, p = p l R 1 T x ,  m 2 =  --3-nap2=oonst ,  (i.i) 
A 

P2C2 a 0 
Tv 92 P ~ 1 , TT -- 3~ 1 \1 + 5L2]' d j =  "~-+ vj--~x, / =  1.. 2. 

Here F and Q are the total flows of momentum and heat from the gas to the particle; A is 
the work of the interphase forces; T v and T T are the quasisteady times of velocity and 
thermal relaxation in particles of radius a; % p and ~ are the dynamic viscosity and thermal 
conductivity; dj denotes the complete derivatives along the trajectory vj (j = i, 2). The 
quantities dependent on le are identified with the symbol ~. 

For purposes of subsequent analysis let us introduce the average density and the mean 
mass velocity of the mixture as a whole and the diffusion phase velocities 

A A 

tTv is the Stokes relaxation time; T T is found from the three-temperature model of thermal 
interaction [6, 7] with dimensionless flows of heat from the particle surfaces to the gas, 
i.e., Nu I = 2 and from the particle surfaces to the particle phase Nu 2 = i0, where the 
subsequent effect can usually be neglected, owing to ~i < %2 (the two-temperature scheme) 
[7]. 
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wl = V l - - V '  w2 = v 2 - - v ,  P2 = P - - P 1 .  

I t  f o l l o w s  f rom t h i s  d e t e r m i n a t i o n  t h a t  

ply) 1 ~L S ~2~W2 da = 0; dj = d: + wjO/Ox, ] = 1, 2; 
A (1.3) 

where the equations for the conservation of mass and momentum for the mixture are derived 
by integration of the corresponding Eqs. (i.i) over the particle masses and through addi- 
tion to the conservation equations for the gas phase. 

2. First Approximation of the Small Parameter 6. The equations for the conservation 
of momentum and energy in particles of radius a from (i.i) are ordinary differential equa- 
tions, provided~that we treat them along the trajectories of motion for individual particles. 
With small 6 ~ Tv/t , ~ ~T/t, the solutions of these equations for v2 and T2 can be presented 
in the form of normal series 

~ = vl -~od~Vl + .... 

~ = r~ - ~ r l  + 7 ~ r ~  - ... ( 2 .  ~) 

From t h e  f i r s t  o f  t h e  e x p r e s s i o n s  in  ( 2 . 1 )  and f rom d e f i n i t i o n  ( 1 . 2 )  we f i n d  

wl - -  w2 = ~o(dtv q- ~ w l  -F w~v~) "-F 0(v82). ( 2 . 2 )  

I n t e g r a t i n g  ( 2 . 2 )  o v e r  t h e  p a r t i c l e m a s s e s  and t a k i n g  i n t o  c o n s i d e r a t i o n  ( 1 . 2 )  and ( 1 . 3 ) ,  
we f i n d  t h a t  

w 1 = 9 -1 (dtv) S m2~v~rda + 0 (v~)m), w m = w 1 - -  "Tvdtv q- 0 (v+2). 
A 

( 2 . 3 )  

From the equations of the conservation of mass and number of particles it follows that 

--I 9-1dtP = P, d t p l +  O(Sv~) = ~ ' - a d t N  + O(~vx) = - - Y x ,  

or  N = pp0-1N0(1 + 0 ( 6 ) ) ,  m = m0(1 + 0 ( 6 ) )  (m = P 2 / P l ) -  The g e n e r a l  s y s t e m  o f  e q u a t i o n s ,  
when we u t i l i z e  e x p r e s s i o n s  ( 2 . 1 ) ,  ( 2 . 3 ) ,  ( 1 . 2 ) ,  and ( 1 . 3 )  in  f i r s t  a p p r o x i m a t i o n  o f  6, 
can be represented in the following form: 

dt9 q-- pv x = O, pdtv q- Px = O, 

p ---- O1R1T1, dt91 + 91v.: q- (ptwl)x = 0, 

(plcl q- p2c2)dtT1 - -  dtP - -  c~01 "$" wlpl(cl - -  c2)T1~ = 0, 

wl = m0(l + mo)-l"%dt v, 01 = pm0(t -F mo)-l~:Tdt2T1. 
(2.4) 

Important is the circumstance that we have eliminated the need for the equations of 
conservation of the number of particles with radius a (the equation for the distribution 
density N), since only the integral characteristic N0(a) of the initial distribution within 
the average relaxation times ~v and T T enter into the remaining system: 

Tj = ( ! ' ~ 2 " ~ j ~ o d a ) / ( ! " ~ N o d a ) ,  ] =  v, T, 

2 o~ -1 t o ~ . - 1 (  ~ ~I~T 1) ~v = y P2a~,3~l , "~T = --~-p~c~as,8,~l I + T 

(2.5) 

Here as, 3 is the mean radius from the series [9]/ 

(2.6) 
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3. Certain Simplifications. Up until now, when we expand over the small parameter 
~, we imposed no limitations on the amplitudes of the waves being dealt with here. System 
(2.4) can be significantly simplified if we assume that the relative amplitudes of the 
perturbations are finite, i.e., ~ ~ 6 -z, where ~ ~ (p - P0)/P0 ~ (0 - 00)/P0 ~ (T - T0)/T 0. 
In this case, we can neglect the last terms in the equation for the conservation of energy 
as small in comparison with the rest, while in the terms proportional to 6 we can take 
the unperturbed parameters of the medium as coefficients. In particular, the operator 
d t in wz and 0 z from (2.4) is commutative with respect to 3/8x: dt(~/Sx) = (8/Sx)d t. 

In the place of the variable p~ let us introduce the relative mass content of the 
particles in the mixture, namely m = P2/Pz, P = pz(l + m). Then, from the continuity equa- 
tion (2.4), with consideration of (2.5) and (1.2), we have 

d~m = mo%dtv~, m = mo(l + %v~), 

i.e., the perturbation m is a quantity of the first order of smallness with respect to 
6. Making use of this fact, we can bring the equation for the conservation of energy to 
the form 

d t p =  - -?~pv  x -- plornoC~2%'~ fltv~:, 

__ -" ( i -~)(t+mo) a ( v ~ - i ) ~ ' P ~  ~+-g- 
2 

% 0 + ~o 7) (~ + V~o~) 

c = c~tcz, "~ = LI/Lz, P r l  ---- Vzq/Lz,  7t = ct/(e~ - -  Bx) .  

(3.1)  

When we substitute the v x from the continuity equation into (3.i), we see that the rela- 
tionship can be singly integrated over t and we can derive the equation of state p = 
p(p, dtP). We can thus present system (2.4) in the following canonical form: 

d t p + p v  x ~ O, pdtv + Px = O, ( 3 . 2 )  

P/Po = (P/Po) ~'e + YeTodtP/Po" 

Here we have introduced the characteristic relaxation time for the average density of the 

mixture, i.e., z 0 = Tv~0m0/(l + m0). 

In the Lagrange variables t and ~, where v = dtx and the operator d t becomes the opera- 
tor of partial differentiation, Eq. (3.2) reduces to a single equation for the dimensionless 
density, namely p = P/P0: 

(~-1). + v~lc~ (~e)~ + C ~ 0 ~  = 0. (3.3)  

F o r  s m a l l  p e r t u r b a t i o n s  O = 1 + s R ,  s ~ 1 ,  f r o m  ( 3 . 3 )  we h a v e  

R ~ t _ _ C 2 R ~  __ Ce~ToR~ = O. (3.4) 

Linearization of (3.2) leads to (3.4), where R may be understood to refer to perturba- 
tions in density, pressure, or velocity, while differentiation with respect to g can be 
identified with differentiation with respect to x. The dispersion relationship which corre- 
sponds to Eq. (3.4) is in agreement with the low-frequency asymptote_of the complex wave 
number for polydisperse suspensions [9] (in [9] ~0 does not contain ~ owing to the smallness 
of this quantity). 

If we regard the relaxation term in the equation of state (3.2) as a small correction 
factor perturbing the Riemann wave, system (3.2) in the s6 ~ 1 approximation can be reduced 
to the Burger equation for velocity [i0], and in the case of a wave traveling to the right 
in coordinates n and t, where n = x - Cet, has the form 

vt +---f-vv~ =-~-C~v~. (3.5) 

Carrying out in (3.5) the substitution which corresponds to the Riemann wave v = 2(~ e - 

j)-1Ce[(P/p0)(Ve-1)/2--1] and :P/P0 = (P/P0) 1~e, we can derive evolutionary equations for density 
and pressure (the dissipative terms in this case can be linearized with respect to E). 
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Equation (3.5) allows us to introduce the concept of viscosity and thermal conductivity 
for the effective gas, since analogous equations are used to describe the propagation of 
weakly nonlinear waves in a gas having the following coefficients (see [10]): 

4 PoC~mo Po%C~r% 

where Ce and ~e represent the volumetric and dynamic viscosities and k e is the thermal 
conductivity of the effective gas (to some extent this is a conditional breakdown). 

We should note that Eq. (3.5) is in agreement with the Burger's equation for the gas 
velocity vz, obtained in [5]. 

4. Conclusion. We have demonstrated that the propagation of long waves of finite 
amplitudes in a polydisperse suspension will be the same as in a monodisperse gas suspension 
and having identical thermophysical phase properties and a particle radius of as, s. This 
conclusion cannot be extended to short waves or to waves of moderate duration, since for 
the case of weak waves when 6 ~ 1 it is the a3, 2 radius that is effective, while in the 
sound dispersion region ~ ~ 1 the model of the monodisperse gas suspension may yield re- 
sults qualitatively different from those derived within the scope of the model for the 
polydisperse mixture [9]. 

The radii am,n, determined from relationships (2.6), exhibit the property of symmetry 
am,n =an.m, lie on the segment A, and for a fixed n form an ordered sequence am.n>az,~ 
for m > s (the latter can be proved by employing the Holder inequality). In particular, 
this means that asm~a3.s~as,o>/a~.o~al.o. In other words, the radius as,a for suspensions 
that are nonmonodisperse exceeds the mathematical expectation el.0, the mean-surface and 
mean-volume radii a~,0, a3,0 and the "volume-surface" radius a3. 2, which are measured, as a 
rule, in the experiments. 
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